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1. Introduction

RPC2 is a remote procedure call mechanism that has been used extensively in the Andrew distributed
computing cnvironment at Carnegic Mcllon University (12]. A detailed description of RPC2 may be found
elsewhere [16, 15]. MultiRPC is an extension to RPC2 that enables a client to perform remote invocations of
multiple servers while retaining the reliability characteristics of remote procedure calls. In this paper we
describe MultiRPC and show huw we have made it fast. versatile and simple to use.

Section 2 presents an overview of RPC2.  Section 3 cxplains why we extended RPC2 with a parallel
invocation mcchanism. The considerations that influcnced the design of MultiRPC arc put forth in Section 4.
Section 5 describes the design and implementation of MultiRPC, explores some of the subtle conscquences of
our original design decisions, and motivates the resulting modifications. Scction 6 discusses the experimental
evaluation of the system. An analytic model is derived, and validated by comparing its predicticns to the
results of controlled experiments. Sections 7 relates this work to other efforts relating to parallelism in
network communication. Scction 8 concludes the paper with an overview of work in progress.

2. Overview of RPC2

RPC2 consists of two relatively independent components: a Unix-based runtime library written in C, and a
stub gencrator, RP2Gen. The runtime system is scif-contained and is usable in the absence of RP2Gen. The
code in the stubs generated by RP2Gen is, however, specific to RPC2.

A subsystem is a set of related remote procedure calls that make up a remote interface. RP2Gen takes a
description of a subsystem and automatically generates code to marshall and unmarshall parameters in the
client and server stubs. It thus performs a function similar to Lupine in the Xerox RPC mechanism [1] and
Matchmaker in Accent IPC [10).

The RPC2 runtime system is fully integrated with a Lightweight Process mechanism (L WP) [13] that supports
multiple nonpreemptive threads of control within a single Unix process. When a remote procedure is
invoked, the calling LWP is suspended until the call is complcte. Other LWPs in the same Unix process are,
however, still runnable. The [.WP package allows independent threads of control to share virtual memory, a
feature that is not present in standard Unix. Both RPC2 and the LWP package are entirely outside the Unix -
kernel and have been ported to multiple machine types. '

The low-level packct1 transport mechanism is a scparable component of RPC2. The only primitives required
of it are the ability to send and reccive datagrams. At present, RPC2 runs on the DARPA [P/UDP
protocol [6, 71.

RPC2 is based on logical connections. The rationale for choosing a connection-bascd rather than
connectionless protocol is presented in the design document [16). For the purposes of this paper the following
facts about RPC2 connections are relevant:

1. A conncction is created when a client invokes the BIND primitive and is destroyed by the UNBIND
primitive. The cost of a BIND is comparable to the cost of a normal RPC.

2. One can view BIND as a special RPC that is common to all subsystems. [n fact, a server is notified
of the creation of a new conncction in exactly the same way it is notificd of an RPC on an cxisting
conncction.

l'T'hmughoul this paper we usc the term “packet” to mean a logicst packct. In some networks a packet may be physically transmitted as
muluple fragments. Such fragmentation is transparent to RPC2.




3. Conncections use little storage. Typically a connection requires a hundred bytes at each of the
client and server ends. No other resources are used by a conncection,

4. Within cach Unix process, an RPC2 connection is identified by a unique handle. Handles are
never reused during the life of a process.

5. At any given time a Unix process can have at most 64K active connections. This is about two
orders of magnitude larger than the number of connections in use in the most heavily loaded
Andrew servers,

Although one speaks of “clients” and “servers”, it should be noted that the mechanism is completely
symmctric. A scrver can be a client to many other scrvers, and a client may be the server to many other
clicnts. On a given connection, however, the roles of the peers are fixed.

Besides BIND and UNBIND, the most importaat runtime primitive on the client side is MAKERPC. This call
sends a request packet to a server and then waits for a reply. Reliable delivery is guaranteed by a
retransmission protocol built on top of the datagram transport mechanism. Calls may take an arbitrary length
of time; in response to client retries the server sends keep-alive packets (BUSY packets) to indicate that it is
still alive and connected to the network. On the server side, the basic primitives are GETREQUEST, which
blocks until a request is received and SENDRESPONSE, which sends out a reply packet. RPC2 provides
exactly-once semantics in the absence of site and hard network failures, and at-most-once scmantics
otherwise [17].

A unique aspect of RPC2 is its support of arbitrary side effects on RPC calls. The side effect mechanism
allows application-specific protocols to be integrated with the base RPC2 code. Side effects and a number of
other RPC2 features are discussed in the design document. Tables 2-1, 2-2, and 2-3 summarise the RPC2
primitives relevant to this paper.

Primitive Description
BIND Create a new connection
MAKERPC Make a remote procedure call
MULTIRPC Make a collection of remote procedure calls

Table 2-1: Clicnt Primitives

Primitive Description
EXPORT Indicate willingness to accept calls for a subsystem
DEEXPORT Stop accepting new connections for one or all subsystems
GETREQUEST Wait for an RPC request or a new connection
ENABLE Allow servicing of requests on a new connection
SENDRESPONSE Respond (o a request from a client
INITSIDEEFFECT Initiate side effect
CHECKSIDEEFFECT Check progress of side effect

Table 2-2: Secrver Primitives
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Primitive Description
INIT Perform runtime system initialisation
UNBIND Terminate a connzclon by client or server
ALLOCBUFFER Allocate a packet buffer
FREEBUFFER Frec a packet bufTer

Table 2-3: Miscellaneous Primitives

3. Motivation

The principles underlying MultiRPC arose as a solution to a specific problem in Andrew. In the Andrew file
system [14], workstations fetch files from servers and cache them on their local disks. In order to maintain the
consistency of the caches, servers maintain callback state about the files cached by workstations. A callback
on a file is essentially a commitment by a scrver to a workstation that it will notify the latter of any change to
the file. This guarantee maintains consistency while allowing workstations to use cached data without
contacting the server on each access. Before a file may be modified on the server, cvery workstation that has a
catlback on the file must be notified. Since the system is ultimately expected to encompass over 5600
workstations, an update to a popular file may involve a callback RPC to hundreds or thousands of
workstations. The problem is exacerbated by the fact that a callback RPC to a dead or unreachable
workstation must time out before the connection is declared broken and the next workstation tried. Each
such workstation would causc a delay of many seconds, rather than the few tens of milliscconds typical of
RPC roundtrip times for simple requests. Given these obscrvations, we felt that the potential delay in
updating widcly-cached files would be unacceptable if we were restricted to using simple RPC calls
iteratively.

A simple broadcast of callback information is not feasible. With broadcast, every time a file is changed
anywhere in the system every workstation would have to process a callback packet and detcrmine if the packet
were relevant to that workstation. Using multicast to narrow the set of workstations contacted is also
impractical, because each file would then potentially have to correspand to a distinct multicast address. Since
workstations flush and replace cache entries frequently, the membership of multicast groups would be highly
dynamic and difficult to maintain in a consistent manner.

Besides these considerations, the use of broadcast or multicast does not provide servers with confirmation that
individual workstations have indced received the callback information. Such confirmation is implicit in the
reliable delivery semantics of RPC. It became clear to us that we needed a mechanism that retained strict
RPC semantics while overlapping the computation and eommunication overheads at each of the destinations.
This is the esscnce of MultiRPC.,

MultiRPC has applications in other contexts too. Replication algorithms such as quorum consensus [9]
require multiple network sites to be contacted in order to perform an operation. The request to each sitc is
usually the same, although the returncd information may be different. MultiRPC could be used to
considerably enhance the performance of such algorithms. The performance of some relatively simple but
frequent operations in large distributed systems may also be improved by MultiRPC. Consider, for example,
the contacting of a name or time server. If morce than one such server is available, it may be reasonable to use
MultiRPC to contact many of them, wait for the carliest reply and abandon all further replies.
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4. Design Considerations

The primary consideration in the design of MultiRPC was that it be inexpensive. We did not want normal
RPC calls to be slowed down because of MultiRPC. Although one-to-many RPC calls constituted a very
important special case, we expected simple, one-to-one RPC calls to be preponderant. A related, but distinct,
concern was the increase in program size resulting from MultiRPC.  Since virtual memory usage in our
workstations was alrcady high, we wished to keep MultiRPC small,

Another influence on our design was the desire to decouple the design of subsystems from considerations
relating to MultiRPC. We did not want to require any changes to clients who used only RPC2, or to servers.
Our view was that only clients who wished to access multiple sites in parallel should have to know about
MultiRPC,

Since we insisted on allowing simple RPC and MultiRPC calls in any order on any combination of
conncctions, MultiRPC had to be completely orthogonal to normal RPC2 features. ‘The delivery semantics,
failure detection, support for multipte sccurity levels and the ability to use side effects all had to be retained
when making a MultiRPC call.

A number of the scenarios in which we envisaged MultiRPC being used required replies to be processed by
the client as they arrived rather than being batched. Since the exact nature of such processing was application
dependent it had to be performed by a client-specified procedure. In addition, we felt that it was important
for a client to be able to abort the MultiRPC call either after examining any reply or after a specified amount
of time had elapsed since the start of the MultiRPC call.

Finally, we wanted MultiRPC 10 be simple to use, We have been successful in this even though the syntax of
a MultiRPC call is differcnt from the syniax of a simple RPC call, the latter being similar to a local procedure
call. We have had to violate this syntax for two reasons: to allow clients to specify an arbitrary reply-handling
procedure in a MultiRPC call, and to avoid expanding code size by generating a MultiRPC stub for every call
in a subsystem.

5. Design and Implementation

In this section we first present the design of MultiRPC. We discuss certain reliability and performance
problems revealed by a prototype implementation and then describe the refinements made to alleviate these
deficiencies.

5.1. Overall Structure
Support for MultiRPC is present at both the runtime level and the language level, reflecting the organisation
of RPC2. The runtime interface can be uscd independent of the language interface, but not vice versa.

Runtime support is provided by the routine MULTIRPC that takes a request packet, a list of connections and a
client handler routine as input, and blocks until all responses have been received or until the call is explicitly
terminatcd by the client handler. The packet which is transmitted to a server is identical to a packet gencrated
by an RPC2 call. A server is not even aware that it is participating in a MultiRPC call,

MultiRPC provides the same correctness guarantees as RPC2, except when the client terminates a call
prematurcly. In this case, a success return code indicatcs that no conncction failurcs were detected prior to
the point of termination. However, undetected server failures may have occurred after termination.

SACROACACAN A AOAUACA A ACASIOINOAUALR W
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Language support for MultiRPC is provided by the routines MAKEMULTI and UNPACKMULTI. These routines
interpret templates called argument descriptor structures (ARGs) generated by RP2Gen to perform the
packing and unpacking of paramecters in request and reply packets. The dcecision to interpret ARGs at
runtime rather than to use precompiled stubs as in RPC2 was motivated by storage size considerations. The
slight additional processing cost of parameter interpretation is outweighed by the savings tn the code size. A
consequence of this is that the syntax of a MultiRPC call no longer resembles invocation of a local procedure.
Each component of a MultiRPC call does, however, retain the scinantics of an equivalent RPC2 call.

Appendix [ describes the external interface of MultiRPC using an example. It presents a simple RPC2
subsystem in Figure I-1 and shows typical clicnt and server code written by a user for non-MultiRPC calls in
IFigures 1-3 and [-4. RP2Gen uses the subsystem definition to generate a header file (Figure 1-2) as well as
client and server stub files (not shown),

Figure [-S shows how the uscr has to modify the client code to use MultiRPC. Therc are only two significant
changes: the direct call to the client stub has to be replaced by an indirect call via MAKEMULTI, and a client
handler routine has to be provided to process replies.

The ARGs usced by MAKEMULTI are defined by RP2Gen in the header file. Each routine in a subsystem has
an associated array of ARGs, with the type, usage and size of each paramcter being specified by one array
element. Structures are described by an array of ARGs, one ARG per field. Nested structurcs are described
by correspondingly nested ARGs. At runtime, MAKEMULTI traverses the ARG array and actual parameter list
in step.

The client handler is activated exactly once for each connection specified in the MultiRPC call. Each
activation corresponds to the receipt of a reply or to detection of a pcrmanent failurc on that connection. The
handler enables thesc events to be processed as soon as they occur. Its return code indicates whether the
MultiRPC call should be continued or terminated.

The internal routine SENDPACKETSRELIABLY is the heart of the MultiRPC retransmission, failure detection
and result gathering mechanism. It performs an initial transmission of requests on all relevant connections
and then awaits replies or timeouts. Each timeout on a connection causes a retransmission of the request to
the corresponding scrver. On a reply, appropriate side ecffect processing is performed and then
UNPACKMULTI is invoked. Client-specified timeouts are handled in this routine.

5.2. Handling Failures

Two factors complicate the semantics of failures in MultiRPC. First, since multiple connections arc involved,
how does one treat failures on an individual connection? Should the entire call be declared a failure and
aborted at that point? In our design this decision is delegated to the client handler. This routine is called on
cach failure and the return code from it specifics whether the call should be terminated. This allows
applications to use a variety of strategies, such as termination on a single failure or termination beyond a
threshold of failures. If an error such as an attempt to use a dead conncction is detected during initial
processing of a MultiRPC request, packet transmission is suppressed on that connection.

The second source of complexity arises from the fact that the client handler can terminate a MultiRPC call
before all replies are received. What is the state of the conncctions on which replics have not been received?
Should these conncctions be monitored for failure after the call is terminatcd? How are the outstanding
replics dealt with if they do arrive eventually? Our strategy is to pretend hat a response has actually been
received on cach of the outstanding connections. After termination of a MultiRPC cail MultiRPC increments
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the sequence number and resets the state on each such connection. Responses that do eventually arrive are
ighored. and new talures wiil not be detected untl the next MuluRPC or simple RPC2 call.

This abdity o termunate 4 MuluRPC call prematurely interacts with an orthogonal aspect of RPC2 to produce
arace condition. Originally . the RPC2 protoco! required the client to send an acknowledgement to the server
when areply was recened. The server would retry the reply untl it received the acknowledgement or unul it
umed vut. Suppose a cilent were to wrminate a MultRPC call prematurely and then immediately make
another MulauRPC call.  Then deadlock could arise on cach connectton on which a reply was outstanding
when the first call was terminated. The retried replics by the server on that connection »ould be ignored by
the client. Similarly, the server would ignore the new request trom the client. Only a server or client timeout
could vud the deadleck.  This problem would be compounded if the client terminated the sccond call
prematurely, and then continued wath further MultiRPC calls. The client could continue indefinitely in this
mode without realising that the connection was functionally dead.

Our solution to this problem is to send an explicit negative acknowledgement if a packet with a sequence
number higher than expected is received. This cnables both the client and the server to immediately detect
the failure mode described above. Because the RPC2 protocol no longer requires replies to be acknowledged,
this fix 15 now superfluous. However, we retain it to allow prompt identification of connections that have
oeen marked unusable by a server for other reasons such as side-effect failures.

Another possible failure mode relates to the client handler routine. During an excessively long computation
in this routine, the internal buffers in Unix will be filled with incoming replics and further replies will be lost.
This has the effect of increasing retransimissions and hence degrading performance. In addition, logical errors
can ansc if the client handler is not reentrant but yiclds control. This can happen, for instance, if the client
hand!er makes an RPC during its processing. Writing a client handler is thus, in many ways, similar to writing
an interrupt handler in an operating system.

5.3. Evolution

Experience with an initial prototype of MultiRPC led us to make a number of changes pertaining to function
and pcrformance. The changes relating to function have been mentioned in Scction 5.2. In this section we
describe the changes that we made to improve the performance of MultiRPC,

Early trials of MultiRPC showed a suprisingly large number of retried packets, even when the number of
servers being contacted was relatively small. Careful cxamination of the code showed that most of these
packets were not being lost, but were being discarded after receipt. It turned out that the low-level RPC2
code first checked for timed-out events and then checked for packet arrivals. For a MultiRPC call to many
sites, the total time to transmit all requests exceeded the first retransmission interval. Replies from the first
few servers were discarded because they corresponded to events that had timed out. To fix this problem we
now time out events only after receiving all packets that have arrived.

Another change was made to the same picce of low-level code to reduce the number of LWP context switches.
Rather than yield control on each received packet, the code now yields control only after all available packets
have been received. In MultiRPC this reduces context switches because all these packets are destined for the
same client LWP, This is in contrast to the situation in simple RPC2 calls where the semantics of RPC
guarantccs that a client LWP can be waiting for at most one packet.

A third change addressed the fact that Unix provides only a limited amount of buffering in the kerncl for
incoming packets. For a sufficiently largc number of servers in a MultiRPC call, enough replies could arrive
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the wwal numrer of packers exenged as well as the memor, and processor utlisatinn at the chient to queue
and process these packets.  The Lddittonal processng further slowed the ¢lient and caused 1t 1o luse new
cophessthus teadinz toan unstabie mode of opcration. For this renson, as well as the faillure mede descnibed
'n Sucuon 5.2 und other reasons independent of MuluRPC, we have changed the reliable transmission
protecol to no lenger acknowledze replies.

The current implementatonn of MuliRPC incorporates all the modifications described in this section and a
number of other minor changes. The performance measurements described 1in Section 6 were obtained with
this implementation.

6. Performance

The periormance measure that best characterises MultiRPC is the ratio of the clapsed time for using RPC2
iteratively (), to the elapsed ume for using MuluRPC (m). This ratio (#/m). as a function of the number of
sites contacted (), is the speedup realised by a MultiRPC implementation. Although linear speedup is clearly
desirable, MuluRPC can be valuable even with modest speedup. In the application which motivated
MuluRPC, for instance, rapid failurc detection was of much greater concern than speedup of processing. This
benefit of using MultiRPC exists cven if there is no speedup of processing.
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In this section we assess the spcedup of MultiRPC in three steps. We first present an analytic model in
Section 6.1, validate this model using data from controlled experiments in Scction 6.2.2, and then present, in
Scction 6.2.3. duta from large-scale experiments where the assumptions behind our mnodel are violated. The
raw data for the mcasurements and the analytic model predictions are found in Appendix I, and are
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presented graphically in Appendix V.

6.1. Analytic Model

Our goal in this section is to derive an analytic model that can predict the behaviour of MultiRPC. Although
the simplifying assumptions we make may not strictly hold in practise, they are acceptable for the level of
accuracy we are trying to achicve,

The most important assumption deals with network topology and latency. In most distributed systems, the
actual transit time on the nctwork is a small fraction of the processing time spent in sending and recciving a
packet. Routers or other intcrconnecting elements on a multi-segment nctwork can, however, increase latency
considcrably. For the purposes of our model, we assume that the client and all the cervers are on a single-
scgment network that has negligible latency.

A sccond assumption relates to mutual interference and loss of packets. Although MultiRPC is built on
unreliable datagrams, the actual probability of packet loss is quite low, typically below 1 percent. However, as
more servers are contacted, the probability of packet loss increases because of limited buffering capabitity at
the clicnt. FEven if packets are not lost, race conditions betwceen the client and the servers can cause packet
retransmissions. We ignore all these coinplications and assume that there are no lost or retried packets during
a MultiRPC call,

Finally, we assume that cach server takes a constant amount of time to secvice a request and that this time is
uniform across all servers. This assumption is valid to a first approximation even though the specific nature of
the request, the presence of other processing activity at the servers, and slight differences in hardware
performance can result in nonuniform service times.

A MultiRPC call can be decomposed into the following components:

pack Packing of arguments by client.

cloh Protocol and kerncl processing by client to send request.

servoh Protocol and kernel processing by server to receive request and send reply.
clproc Protocol and kernel processing by clicnt to receive reply

unpack Unpacking of arguments and processing in client handler.

In terms of the MultiRPC implementation described in Section 5.1, pack is the time taken by the routine
MAKEMULTI, cloh corresponds to the time in MULTIRPC and the initial part of SENDPACKETSRELIABLY, c¢lproc
corresponds to the remainder of SENDPACKETSRELIABLY, and unpack is the time taken by UNPACKMULTI and
a call to a null client handler routine. Since MultiRPC and simple RPC2 calls are indistinguishable at the
servers, servoh is the same for both iterative RPC2 cails and MultiRPC. This is the total time taken to receive
a request and to send a rcply. assuming zcro processing time. We include a separate term comptime to
account for the application processing at a server.

The pack component is performed only once, regardless of the number of scrvers being contacted. The servoh
and comptime components overlap at the servers. Ail the other components have to performed once for cach
server. In terms of these components, the total time m for a MultiRPC call to n sites can be expressed as

m = pack + (nxcloh) + (servoh + comptime) + (nXclproc) + (nXunpack)

Unfortunately this expression contains an oversimplification that affects the model predictions significantly.
Suppouse waittime is the clapsed time between the sending of the last request and the receipt of the first reply
by the client. For a single server, waittime will be the sum of servoh and comptime. For a large enough




number of servers,however, the reply trom the first scrver may he avalable before the last requoest is sent out;
in this case waittime is zero.

Assuming that the time to send a packet is sendtime, the expression for m can be refined as follows:

waittime = (servoh + comptime)=((n= L)X sendtine)
if (waittime < Q) then waittine = 0
m=pack + (nxcloh) + waittime + (nxclproc) + (nxunpack)

If a null RPC2 call takes rpctime, the total time, r, to contact n servers using iterative RPC2 calls is given hy

r = nx(rpctinie + comptime).

The times for the individual components in our implementation were obtained by Jctual measurcment and
are presented in Table HI-2. Using these values in the expressions derived above we can calculate the
quautities r, m and »/m for server computation umes of 10, 20 and 50 milliseconds. These predicted values
are presented in Table [1[-6 and shown graphically in Figure [V-4,

Most systems with parallclism initially exhibit lincar speedup, then show sublincar speedup, and finally
saturate. Figure [V-4 shows that MultiRPC conforms to this expected behaviour. However, two detailed
obscrvations are apparent from this graph. First, saturation occurs at surprisingly low levels of specdup.
Second, the level at which speedup saturates and the number of servers at which saturation sets in are both
dependent on the server computation time.

The server computation time is central 10 MultiRPC because most of the parallelism comes from overlap of
server computations. The sending of requests and processing of replics at the clicnt are done scquentially.
The recalisable spcedup depends on how long these operations take in comparison to the time spent at the
scrver.

We can quantify this rcasoning in the following way. Our measurements show that the dominant components
of MultiRPC are the time to send a request and the time to receive a reply. Supposc the sum of these
quantities, called systime, is identical in MultiRPC and RPC2. Further, let the total time spent at a server
(equal to the sum of servoh and comptime) be servtime. Then the MultiRPC and RPC2 call times to # servers
can be crudely approximated as follows:

m = (nxsystime) + servtime

r = (nxsystinie) + (nxservtime)

serviime
systime + serviime _ systime

, servtime servtime 1
systime + 1+ —X—
n systime n

r
m

_ Servlime
= systime

Thenr. = L‘*'__;
™o+

n

LetT

The above expression clearly shows that the speedup is sensitive to the value of 7. In the limit, as n tends to
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infinity. the value of /mtends to 1 + 7. This accounts ter the fact that the saturation value of the speedup is
higher for longer server computation times. Because the times to send and reccive a packet dominate systine,
improvements to the underlying nctwork primitives will improve the maximum speedup obtained with
MultRPC. Consequently, an improved basic RPC mechanism would result in improved MultiRPC
performance rather than rendering it superfluous.

6.2. Experimental Results

We performed a scries of carefully controlled experiments to confirm our understanding of MultiRPC and to
explore its behaviour when contacting a large number of scrvers. We describe our expcriments and the
observations from them in the next three scctions.

6.2.1. Experimental Environment

The experiments were conducted in an environment of about 500 Sun3, DEC MicroVax, and IBM RT-PC
workstations running the Unix 4.2BSD operating system and attached to the Andrew File System. For
uniformity, we ran our tests only on the IBM RT-PC workstations, with onc of the workstations being the
client and the others servers. By designing our tests to require no file accesses or system calls on the scrvers
we avoided distortions of our measurements by distributed file system access.

The topology of the network connecting these workstations is shown in Appendix II. Although physically
compact®, there is considerable complexity in the nctwork structure. There are about a dozen Ethernet and
IBM Token Ring subnets connected to cach other dircctly or via optic fibre links, Active computing
elements, called routers, perform the appropriate forwarding or filtering of packets between these subnets. In
addition to the Andrew workstations, many standalone workstations and mainframe computers are also on
this network.

The scale and complexity of the network introduced serious problems in coatrolling our experiments. We
had to be on guard against extrancous nctwork activity loading the network and the routers. We also had to
contend with the fact that closcly-spaced replies to a MultiRPC call from a large number of servers could
overload the routers and affect our measurements,

To address these problems we separated our experiments into two classes. The tests for model validation,
discussed in Scction 6.2.2, were run entirely on workstations located on a single subnet. For these tests we
were able to ensure that there was no other network activity. The presence of routers was irrclevant since the
client and all the servers were on the same subnet. Since there were only 20 workstations on this subnet, our
model validation is restricted to this range.

The tests discussed in Section 6.2.3 to explore the large-scale performance of MultiRPC could not be
controlled so well. To include more than 20 servers our tests had to span multiple subnets. We minimised the
effects of extraneous network activity by running our experiments in the early hours of the morning, when the
network was lcast active. Preliminary tests confirmed that this consistently produced smaller variances in our
measurcments than tests run at any other period of the day.

We simulated computation on the servers by delaying the reply to a request by a specified amount of time.
Unfortunatcly, the clock resolution of 16 milliscconds on the RT-PCs was inadequate for the range of
computation times of interest to us. We therefore had to resort to a timing loop to achieve delays of 10, 20

ll‘he entire CMU campus is only about one square kilometer in size.
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and 50 milliseconds in our tests. The clock resolution was also inadcquate for measuring the clapsed time of
individual calls at the client. To overcome this, we timed many itcrations of each call and used the average.,

6.2.2. Validation

The worst performance of MultiRPC, relative to RPC2, occurs when a single site is contacted. In this
situation, the additional complexity of a MultiRPC call is not amoertiscd over many connections, Table 11I-1
compares the elapsed times to contact a single sitc using RPC2 and MultiRPC, for zero server computation
time. The table shows that the difference in times is negligible. Further, the RPC2 time presented in the
tablc is no worse than the time observed on an earlier version of RPC2 that lacked MultiRPC support. Our
design criterion of not slowing down simple RPCs has thus been met.

To compute the model predictions we need to know the times taken by individual components of MultiRPC.
These values, obtained by standalone measurements of MultiRPC, are presented in Table 11I-2. By
substituting these values in the expressions derived in Section 6.1 we obtain the model predictions shown in
Table [{{-6 and Figure [V-4.

Figures 1V-5, 1V-6 and 1V-7 compare the predictions of the model to our measurements. The model
consistently predicts slightly better performance than we actually observe, but the fit is suprisingly good
considering the simplicity of the model. For the reasons discussed earlier we were unable to investigate the
validity of the model beyond 20 servers.

6.2.3. Large Scale Etfects

Since the original motivation for MultiRPC involved & scenario with a large number of workstations
distributed over the cntire CMU campus, we were curious to sce just how well MultiRPC behaves in such an
environment. Our analytical model is not valid in this situation because of the presence of routers and
extrancous network traffic. These factors affect both RPC2 and MultiRPC. Their effects show up as
anomalies in the average values of the measured quantities, and as high associated variances.

Table I1I-3 and Figure IV-1 present our observations for server computation times of 10, 20 and 50
milliscconds. The bechaviour below about 25 servers is in a¢cordance with our model. Beyond this the
specdup drops rather than increasing or remaining constant. Dctailed examination of the data revealed an
increase in the number of retried packets beyond about 25 servers. Below 25 servers, retries never comprised
more than 0.4% of the total packets sent in a MultiRPC test. In fact, for those configurations there were often
no retricd packets at all. Beyond 25 servers thc number of retried packets increased, and sometimes
accounted for as much as 25 percent of the total traffic in configurations beyond 50 servers.

The measurements described above were performed with server computation times that were constants. We
conjectured that one of the main reasons for poor behaviour at large scale was the overloading of routers due
to simultaneous arrival of replies from many servers. Real server computations tend not to be constant. We
thercfore repeated the experiments with computation times normally distributed, with a standard deviation
that was 10% of the mcan, Table IIi-4 and Figure IV-2 show the corresponding results,. We also repeated the
experiments with an cxponentially distributed service time, to provide validation data for a stochastic model
that might be built in the future, This data is shown in Table III-5 and Figure 1V-3. Unfortunatcly, as the
results from these experiments show, the aberrations in performance at large scale do not vanish when using a
non-constant service time distribution.

Although there is a decline in observed speedup in the large scale tests, it must be emphasised that MultiRPC
performance is always better than itcrative RPC2 performance. Further, we cencountered no functional
problems in using MultiRPC up to 100 servers. Thesc facts give us confidence in the value of MultiRPC as a
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basic componcnt of large distributed systems.

7. Related Work

In this section we look at a number of parallel RPC mechanisms with a view to placing the design of
MultiRPC in perspective. We make no attempt to be exhaustive in our examples or to be complete in our
descriptions. Rather, our goal is to examine these systems in a manner that highlights their similarities and
differences with respect to MultiRPC,

Work in the area of parallel network access has typically focused on broadcast or multicast protocols. Two
examples cf such work are the Sun Microsystems’ Broadcast RPC (Sun-BR PC) (18}, and Group Interprocess
Commuanication in the V Kernel (V-GIPC) [3].

Sun-BRPC depends upon IP-level broadcast to communicate with multiple sites. Servers must register
themselves in advance with a central port in order to be accessible via the broadcast facility. This is in contrast
to MuliiRPC where no explicit actions need be taken by the server; existing servers do not have to be
modified, recompiled nor rclinked. Like MultiRPC, Sun-BRPC provides for a client handler routine and an
overall client-specified timcout. However it does not provide the same correctness guarantees and error
reporting as MultiRPC,

V-GIPC uscs the Ethernet multicast protocol as its basis and dcfines Aost groups as message addresses. Each
request is multicast and it is up to cach host to rccognise those group addresses for which it has local processes
as members. Recliable communication is not an objective of V-GIPC, even though its designers report that
lost responses due to simultancous arrival of packets arc common. Another difference is that there is no
notion of a client handler in V-GIPC. A client is blocked only until the first response is received; further
responses have to be explicitly gathered. When another call is made, the previous call is implicitly terminated
and further responscs to it are discarded.

Neither Sun-BRPC nor V-GIPC allows long scrver computations at all sites in a parallel call while providing
timely notification of site or network failures. A sufficiently long computation would simply cause a timecout.
The MultiRPC rctransmission protocol addresses this issue and allows the client to distingush between a long
computation and pecrmanent communication failure.

There are also parallel RPC systems which do not .depend on broadcast nor multicast. One such system is
Circus [4, 5], which focuses on achieving high availability by using parallel RPC as a vehicle for replication.
Circus is built on top of the DARPA IP/UDP protocol and is unique in that it supports many-to-many
communication rather than onc-to-many. It provides for a fixed sct of routines called collators, one of which
must be specificd by the client when making a call. Collators perform a function similar to the MultiRPC
client handler routine, but differ in that they do not allow a call to be terminated prematurely. Like
MultiRPC, Circus uses probe packets to distinguish between long server computations and permanent
communication failure. Many problems addressed by Circus, such as orphan detection and exactly-once
semantics in the presence of failures, are unique to its intended application.

The Gemini parallel RPC mechanism [2, 11] is built on the reliable IP/TCP byte stream protocol {8], that
subsumes the retransmission, timcout, acknowledgement and probe functions of RPC. It is similar to
MuitiRPC in that it requires no multicast or broadcast support. Unlike MultiRPC, a distinct Unix process is
crcated on a server for each client. The stub compiler for Gemini accepts interface specification in C rather
than defining a scparate interface language. The cquivalent of the MultiRPC client handier routine is a
language construct called a result statement. This is a compound statement in C that syntactically appears
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after a parallel remote procedure call. This body of code is executed exactly once for cach reply and the
exccution can terminate the entire call prematurely.

8. Conclusion

The central message of this paper is that it is possible to build an efficient and easy to use parallel invocation
mechanism whose semantics is a natural extension of the remote procedure call paradigm. We have derived
an analytic model of this mechanism and shown that its predicted performance closely matches the mcasured
performance of our implementation. Asymptotic analysis of this model indicates that improvements to the
underlying transmission primitives would further strengthen the casce for using MultiRPC in preference to
iterative RPCs. We have demonstrated experimentally that the mechanisin werks successfully for up to 100
servers in a single call, exccuting in a complex network environment with diverse transmission media and
interconncecting elements. Comiparison with other parallel invocation mechanisms shows that MultiRPC is
unique in its overall design, although some of the individual concepts used in it may be found elsewhere.

There arc a number of ways in which the work reported here may be extended. First, MultiRPC provides
parallelism at the programming interface but does not require multicast capability in any of the lower levels of
the networking software. Suppose, however, multicast were available. How could MultiRPC use it? What
would its performance behaviour be then? Our view is that multicast is a performance enhancement rather
than a fundamental programming primitive. Preliminary work indicates that if the programmer is required to
explicitly group conncctions, the semantics of MultiRPC can be preserved while using multicast internally,
An interesting sccurity question arises in this context. How does one support site-specific encryption on
multicast packets? Our approach is to usc the underlying secure RPC2 connections as key distribution
channcls for internally gencrated group-specific keys. We will report on our ¢xperience with this approach
and further details on the use of multicast in a later paper.

Another potential improvement to MultiRPC involves ARGs. RP2Gen does not take advantage of repeated
argument types when it gencrates ARGs; it creates a new ARG for each parameter of each remote operation.
For recursive structure arguments this can consume a significant amount of storage. Sincc structure
arguments are defined in the subsystem specification file, and hence known to RP2Gen, it should be possible
to sharc ARGs.

Finally, using software in a varicty of applications often results in unexpected lessons and refinements. [t is
impossible to predict in advance what such changes might be in the context of MultiRPC. However, we are
confident that MultiRPC and mechanisms similar to it will prove to be an important building block in
distributed systems.

Acknowledgements

We wish to thank Tom Holodnik of the Data Communications Group at Carncgie Mellon University for
permission to use Figure II-1. We would also like to express our appreciation to Jay Kistler, Daniel
Duchamp, Bradley White and Eric Cooper for their careful reading of this paper and their many uscful
comments,




o 14

I. An Example

This appendix presents a brief example in order to make some of the previous discussion more concrete.
Although this example is contrived, it is adequate to illustrate the structure of a client and scrver that
communicate via RPC2, and the changes that must be made to the client to use MultiRPC.

!"l', The subsystem designer defines a subsystem, chooses a name for it, and writes the specifications in the file

e Csubsystemname).rpe2. This file is submitted to RP2Gen, which generates client and server stubs and a header
) file. RP2Gen names its gencrated files using the file name of the .rpc2 file with the appropriate suffix.

N

:‘d Figure I-1 presents the specification of the subsystemn exaniple in the file example.rpc2. RP2Gen interprets

; this specification and produces a client stub in the file example.client.c, a server stub in example.server.c and a

:n . header file example.h (shown in Figure 1-2). This subsystem is composed of two operations, double_it and
b triple_it. These procedures both take a call by value-result parameter, tesiva/. containing both the integer to be
operated on and the result returned by the scrver.

. \-f
/ '.‘: Once the interface has been spccified, the subsystem implementor is responsible for exporting the subsystem
::: and writing the server main loop and the bodies of the procedures to perform the server operations. A client
*‘ * wishing to use this server must first bind to it and then perform an RPC on that connection. Figures [-3 and
I-4 illustrate the client and server code. We wish to emphasise that this code is devoid of any considerations
R relating to MultiRPC.
"~ »
o '.
::- Now consider extending this example to contact multiple servers using MultiRPC. The example.rpc2 file and
At the server code remain exactly the same. Argument Descriptor Structures (ARGs), used by MultiRPC to
tn marshall and unmarshall arguments, are already present in the client stub file; pointers to these structures are
" defined in the example./t file. Only the client code has to be modified, as shown in Figures I-5 and I-6.
) };I
: From the clicnt’s perspective, a MultiRPC call is slightly diffcrent from a siinple RPC2 call. The procedure
' invocation no longer has the syntax of a local procedure call. Instead, the single library routine MAKEMULTI is
::: . used to access the runtime system routine MULTIRPC. The client must allocate all neccssary parameter
y storage. IN arguments are simply supplied as for any procedure call, but for OUT and IN—QUT parameters
| arguments arrays of pointers to the appropriate types must be supplicd to the MAKEMULTI routine. The return
i:;::: arguments ftom each of the servers will be placed in the appropriate elements of the arrays.
'0'.'0
:::.;: The client is also responsible for supplying a handler routine for any server operation which is used in a
XN MultiRPC call. The handler routine is called by MultiRPC as each individual server response arrives,
providing an opportunity to perform incremental bookkeeping and analysis. The return code from the
’ handler gives the client control over the continuation or termination of the MultiRPC call.
a RP2Gen specification file for simple subsystem
‘ : ': Server Prefix "setv”; tag server operations to avoid ambiguity
- Subsystem “Example”:
e
oy double_it(IN OUT RPC2_Integer) testval);
;:: " triple_iIN OUT RPC2_Integer) testval);
Wy,

Figure I-1: example.rpc2 specification file
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W, h file produced by RP2GEN

L} Input file: example.rpc2
& #include "rpc2.h”
W% #include "se.h”
)
: ' Op codes and definitions
Q.'.
] #define doulle_it_ OP 1

extern ARG double_it_ARGS[ I;

\':, #define double_it_PTR  double_it_ARGS

hi
-
q‘ #define triple_it_OP 2
"\. extern ARG triple_it_ARGS{ |;

:. #define triple_it_PTR  triple_it_ARGS

e Figure I-2: The RP2Ger-generated header file example.h
b y
::. Include relevant header files

s

oW

0:5 main()
&y {

int testval, op;

: RPC2_Handle cid;

5 Perform LWP and RPC2 Initialization
’: Establish connections to server using RPC2_Bind

g RPC2_Bind( Bind arguments, &cid),

“Y while (TRUF)
N\ {
) printf{"\nDouble [ = 1] or Triple [ = 2] (type 0o quit)? *);
?i: scanf("%d", op);
‘:, if(op==10)

: break;

printf{Number? ")

‘;! scanf{"%d". testval);
M Perform RPC2 call on connection cid
[ if (op = = 1) double_it(cid, testval);
e else triple_it(cid, testvalf]

.lf. printf("result = %d\n", testval);
) }

‘:‘ RPC2_Unbind(cid); Terminate connection with server
: ; printi("Bye...\n");
" }
o'

re

‘ Figure I-3: A Simple RPC2 Client
'
v |
o'. \
"
o \
0 |
i
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Lh ™)
':;:\ Include relevant header files
main()
N {
.\_ RPC2_PacketBuffer *reqbuffer:
:[\ RPC2_Handle cid;
s Perform LWP and RPC initialization
0 o Set filter to accept requests on new or existing connections
o Enter server loop
S5 while(TRUE)
e {
WY Await a client request:
RPC2_GetRequest(&cid, &raqbuffer, Other Arguments)
O serv_ExecuteRequest(cid, reqbuffer) Routine is generated by RP2Gen
O }
K
&
N Bodies of server procedures
X long serv_double_it(cid, testval)
‘ RPC2_Handle cid;
pX RPC2_Integer *testval;
. {
:: . *testval = (“testval) * 2; i
N, return(RPC2_SUCCESS)); |
; long serv_triple_it(cid, testval)
" RPC2_Handle cid;
. RPC2_Integer *testval;
;.tj {
) *testval = (®testval) * 3;
" return(RPC2_SUCCESS);
» }
o
W Figure I-4: A Simple RPC2 Server
o’:
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Include relevant header files
#define HIOWMANY 3
#define WAITFOR 2
long HandleDouble():

long HandleResuit();

long returns;

main()

int testval{LHOWMANY], op; Can use static or dynamic allocation
RPC2_Handle cid( HOWMANY];

Perform LWP and RPC?2 Initialization

Establish connections to servers
for(count = 0; count { HOWMANY,; count + +)

ret = RPC2_Bind(Bind arguments, &cid[count]);
testval{count] = (int*)malloc(sizeof(int));  allocate space for arguments

}
while (TRUE)

{

printf{"\nDouble { = 1} or Triple [ = 2] (type 0 to quit)? *);
scanf("%d", op);

if (op = = 0) break;

printf{"\nNumber? ");

scanf("%d", *testval(0]); IN argument goes in 1st array slot
Make the MultiRPC call

returns = 0;

bzero(testval, HOWMANY *sizeof{int)); initialize results

iflop==1)

MakeMulti(double_it_OP, double_it_PTR, HOWMANY, cid,
HandleDouble, NULL, testval);
else MakeMulti(triple_it_OP, triple_it_PTR, HOWMANY, cid,
HandleTriple, NULL, testval);
for (count = 0; count ¢ HOWMANY; count+ +)
printf{"result{%d] = %d\n", count, testval{count]);

for (count = 0; count  HOWMANY,; count+ +)
RPC2_Unbind(cid{count]);

printf{” Bye...\n");

}

Figure I-5: Client using MultiRPC
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,’1‘, long HandleDouble(HowMany, cidarray, host, mpeval, testval)
RPC2_Integer HowMany, host, rpeval, *testval(];
RPC2_Handle cidarray(};

P {

..:.; if (rpeval ' = RPC2_SUCCESS)
" printf(" HandleDouble: rpeval = %d\n", rpeval);

o ifl + + returns = = WAITFOR) return -1; Terminate the MultiR PC call
’t,q return(0); Continue accepting server responses

) }
a‘,.‘(
:‘g‘i long HandleTriple{HowMany, cidarray, host, rpeval, testval)
» 'M: RPC2_Integer tfowMany, host, meval, *testval];
." RPC2_Hand!e cidarray(];
"y {
a!?! if (rpeval ' = RPC2_SCUCCESS)
printR"HandleTriple: rpeval = %d\n”, rpeval);

184 if{ + +rewurns = = WAITFOR) return -1; Terminate the MultiR PC call
‘..;f return(0); Continue accepting server responses
. }
Yol Figure [-6: MultiRPC Client Handler Routines
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Il. Network Topology
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Figure I[-1: Carnegic Mcllon Network Topology




Ill. Tables

Table 111-1:

20
MRPC RIC2 R/M
29.00 2780 0.96
097 (1.01)

Figures in parenthesis arc standard deviations.

Measured Times for null RPC2 and MultiRPC Calls (in ms)

pack

cloh

servoh

clproc

unpack

send

0.56

5.98

13.69

393

020

5.15

Table 1[I-2: Average Times for Individual Components of MultiRPC (in ms)
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1\‘ rers H) ms Computation 20 ms Couiputation 50 ms Comiputation
l |
: | |
to I MRPC RPC2 R/M MRPC RPC2 R/M MRPC RPC2 R/M
. | _ L |
r 1 i ‘
i 1| 39 30 18 30 097 4570 | 47 30 095 al 10 7R 80 097
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(Lo7) (2.19) (0 9) (408) 17 63) (352)
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il
‘

o
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' ol
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3l (114.13) (86.52) (433.06) (245.59)

@
100 1705.90 6017.20 is2 1780.40 6844.00 3.84 142950 9947.00 6.96

-:;: (27.00) (222.09) (136.46) (246.76) (217.27) (212.63)

*
“~
'-\ All times are in milliseconds. Figures in parenthcses are standard deviations. A subsct of this data is graphically
§! % presented Figure [V-1 and is also used in Figures 1V-5, [V-6 and 1V-7. For configurations up Lo 20 servers, all machines
®: were located on a single isolated token ring. Configurauons involving more than 20 servers spanned multiple network
po scgments. Cach data point was obtained from 10 trials,
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W Table [1I-3: Mcasured Call Times for Constant Server Computation Times
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e

e A A
ey o

22

Servers 10 ms Computation 20 ms Computation 50 ms Computation
MRPC RPC2 R/M MRPC RPC2 R/M MRPC RPC2 R/M
1 39.32 37.75 102 5040 47.60 094 77.96 78.40 101
(1L.11) (0.99) (6.42) (1.00) (7.92) (12.28)
2 44.92 75.92 169 59 56 9988 1.68 85.28 155.96 183
(1.29) (L.58) (6.68) (10.41) (1.79) (12.06)
5 70.16 208.52 297 79.32 261.68 130 108.36 414.24 382
(3.29) 3.74) (2.98) (5.75) (12.48) (31.02)
10 112.55 478.10 425 112.08 530.00 473 143.40 824,76 575
3.97) (16.40) 9.15) (17.95) (10.01) (19.72)
15 162.75 747.75 4.59 148.16 783.36 529 185.55 1270.85 6.85
(18.40) (21.09) (2.19) (20.76) (14.50) (30.83)
19 . . . . . i 224.00 1698.70 758
(25.12) (42.18)
20 208.05 956.55 460 197.44 1065.76 540 * hd d
(7.10) (3547) (2.16) (21.33)
25 247.48 1153.52 4,66 248.96 1430.00 5.74 258.04 2179.00 844
(1.19) (18.49) (5.14) (931.75) (13.50) (47.62)
50 780.00 2933.10 376 77179 3266.20 423 838.20 4901.70 585
(34.57) (124.90) (8.56) (56.84) (34.70) (186.16)
75 1474.30 4579.60 2 1238.20 5351.07 432 1581.50 7690.20 486
(103.62) (57.35) (177.80) (239.53) (429.48) @171
100 1715.89 6120.10 18 1637.30 7282.70 445 1941.60 10082.40 5.19
(28.35) (61.95) (121.99) (403.44) (1965.90) (248.46)

All times are in milliseconds. Figures in parentheses are standard deviations. This data was obtained from servers
distributed over many network segments. A subset of this data is graphically presented in Figure IV-2. Each data point
was obtained from 10 trials.

Table III-4: Measured Call Times with Normally Distributed Server Computation Times
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" Table I11-5: Mcasured Call Times with Exponentially Distributed Server Computation Times
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e

)

Y 24

3

. LS

3 ; Servers 10 ms Computation 20 ms Computation 50 ms Computation

K7
_":.

: MRIC RPC2 R/M MRPC RPC2 R/M MRPC RIC2 R/M

)

"y 1 34.36 37.80 110 44.36 47.80 1.08 74.36 71.80 1.0§
: 2 39.32 75.60 1.92 49.32 95.60 194 7932 155.60 1.96
~

.; 5 S4.20 189.00 349 64.20 239.00 in 94.20 389.00 413

" 7 71.33 264.60 in 74.12 334.60 451 104.12 544.60 5.23

, \' 10 101.66 378.00 in 101.66 478.00 4.70 119.00 778.00 6.54

: :‘ 13 131.99 491.40 in 131.99 621.40 471 131.88 1011.40 1.55

A 15 15221 567.00 373 152.21 717.00 471 152.21 1167.00 1.67
. 17 172.43 642.60 373 17243 812.60 471 17243 1322.60 7.67

y 19 192.65 8.0 BN x) 192.65 908.20 471 192.65 1478.20 7.67

20 20276 756.00 373 202.76 956.00 471 202.76 1556.00 167

o, 2 253.31 945.00 n 25331 1195.00 472 25331 1945.00 7.68

. 50 506.06 1890.00 373 506.06 2390.00 472 506.06 3890.00 769
.' 75 758.81 2835.00 374 758.81 3585.00 472 758.81 $835.00 769
{ -: 100 1011.56 3780.00 3.74 1011.56 4780.00 473 1011.56 7780.00 7.69

All umes are 1n milliseconds. The server computation time is assumed coastant. This daia is graphically presented in
. Figure 1V-4, and used in Figures V-5, [V-6 and IV-7,

Table I11-6: Predicted Performance from Analytic Model
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The data in this graph is obtained from Table I11-3.
Figure 1V-1: Mcasured Performance for Constant Server Computation Time
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The data in this graph is obtained from Table I11-4.
Figure 1V-2: Mcasured Performance for Normal Server Computation Time
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The data in this graph is obuained from Table 11-S.
Figure IV-3: Mcasured Performance for Exponcntial Server Computation Time




RAT 10 oF RPC.2 T0 MULTI|RPC ELAPSLP T/MES

w - Ml g LAl o4 W TV YW VW TV T7W T F P VT TV YT Y Y Y

2
10
0 10 M% COMPUTATION
A 20 M% COMPUTATION
, O 50 M#% COMPUTATION
8
o} -——Q
7
6
5
. —— 7.\ —d) - -4
4
J
2
14
0 2 4 6 ) 10 12 14 16 8 20

y.y'7)
PREPICTED PERFORMANG A & JeRVERS

The data in this graph is obtained from Table 111-6.
Figure 1V-4: Predicted Performance from Model (Constant Compuation Time)
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The predicted data is from Table 1[1-6. The measurcd data is from Table {11-3,
Figure 1V-5: Comparison of Predicted and Measured Performance (10 ms Computation)
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Figure 1V-6: Comparison of Predicted and Mcasured Performance (20 ms Computation)




32

8
S, - ©
A4 . 0--9
8
6
5
N S e MEASURED

G

RATIO oNF RPC2 TO MULTIRPC ELAPSED TIMES

-

6 2 4 €6 ®& w© wm M, 76 18 20
NUMPER OF SERVERS
FREDICTED VERSUS MEASURED PERFORMANLCE
(50 MS COMPUTATION T IAE)

The predicted data is from Tabic I11-6. The measured data is from Table I1I-3.
Figure 1V-7: Comparison of Predicted and Measured Performance (50 ms Computation)




(1]

(2l

(3}

4]

51

6]

("1

(8]

)]

(10]

(11}

(12]

(13]

3

References

Birrell, A.D. and Nelson, B.J.
Implementing Remote Procedure Calls.
ACM Transactions on Compuler Systems (1):39-59, February, 1984,

Burkhard, Walter A., Martin, Bruce E. and Paris, Jchan-Francois.
The Gemini Replicated File System Test-bed.
In Proceedings of the Third International Conference on Data Engineering (forthcoming). 1987,

Cheriton, David R., and Zwaencpocl, Willy,
Distributed Process Groups in the V Kernel,
ACM Transactions on Computer Systems 2(2):77-107, May, 1985,

Eric C. Cooper.

Circus: A Replicated Procedure Call Facility.

Technical Report UCB/CSD 857196, PROGRES Report No. 84.12, Computer Science Division,
University of California, January, 1985,

Cooper, Eric C.
Replicated Distributed Programs.
In Proceedings of the Tenth ACM Symposium on Operating System Principles. December, 1988.

Defense Advanced Rescarch Projects Agency, Information Processing Techniques Office.
RIFC 791 Internet Program Protocol Specification
Scpiember 1981.

Defense Advanced Research Projects Agency, Information Processing Techniques Office.
RIFC 768: User Datagram Protocol Specification
September 1981.

J. Postel, ed.
RFC 793: Transmission Control Protocol - DARPA Internet Program Protocol Specification
Scptember 1981,

Herlihy, M.
A Quorum-Consensus Replication Method for Abstract Data. Types.
ACM Transactions vn Computer Systems 4(1):32-53, February, 1986.

Jones, M.B., Rashid, R.F., and Thompson, M.
MatchMaker: An interprocess specification language.
In Proceedings of the ACM Conference on Principles of Programming Languages. January, 1985.

Bruce Martin,
Parallel Remote Procedure Call Language Reference and User’s Guide
Computer Systems Rescarch Group, University of California, San Diego, 1986.

Morris, J.H., Satyanarayanan, M., Conner, M.H., Howard, J.H., Rosenthal, D.S.H., and Smith, F.D.
Andrew: A Distributed Personal Computing Enviconment.
Communications of the ACM 29(3):184-201, March, 1986.

Jonathan Rosenberg, L_arry Raper, David Nichols, M. Satyanarayanan.
LWP Manual
Information Technology Center, CMU-ITC-037, 1985,




(14]

(15]

(16]

(17

(18]

34

Satyanarayanan, M., Howard, J.H., Nichols, D.N., Sidebotham, R.N,, Spector, A.Z. and West, M.J.
The ITC Distributed File System: Principles and Design.
In Proceedings of the Tenth ACM Symposiwm on Operating System Principles. December, 1985.

M .Satyanarayanan,
RPC2 User Manual
Information Technology Center, CMU-ITC-038, 1986.

M. Satyanarayanan,
RPC2: A Communication Mechanism for Large-Scale Distributed Systems.
Manuscript in preparation , 1986.

Spector, A.Z.
Performing remote operations cfficiently on a local computer nctwork.
Communications of the ACM 23(4):246-260, April, 1982.

Sun Microsystems Inc.
Networking on the Sun Workstation
15 May 1985.




- *"T "'"""T""" "“”—T"" "’““" A """"""

‘-”i~t"’

g
USRI
:,;Qu,;l

'l A0y Itn‘



